
Anti-pa�erns for Java Automated Program Repair Tools

Yi Wu
11712738@mail.sustech.edu.cn

Southern University of Science and Technology

ABSTRACT

Prior study has identified common anti-patterns in automated re-

pair for C programs. In this work, we study if the same problems

exist in Java programs. We performed a manual inspection on the

plausible patches generated by Java automated repair tools. We

integrated anti-patterns in jGenProg2 and evaluated on Defects4J

benchmark. The result shows that the average repair time is re-

duced by 22.6 % and the number of generated plausible patches is

reduced from 67 to 29 for 14 bugs in total. Our study provided ev-

idence about the effectiveness of applying anti-patterns in future

Java automated repair tools.

ACM Reference Format:

Yi Wu. 2020. Anti-patterns for Java Automated Program Repair Tools. In

35th IEEE/ACM International Conference on Automated Software Engineer-

ing (ASE ’20), September 21–25, 2020, Virtual Event, Australia. ACM, New

York, NY, USA, 3 pages. https://doi.org/10.1145/3324884.3418919

1 PROBLEM AND MOTIVATION

In the test-driven automated program repair systems, a fix is val-

idated if it can pass all the tests in the given test suite. Studies

have revealed the insufficiency of using test suites as specification,

which can lead to generating plausible patches (incorrect patches

that may fail tests beyond a given test suite) by simply deleting

program functionality [9]. Prior study [10] has identified common

problems in automated repair for C programs and applied anti-

patterns to improve the quality of program patches. Our goal is to

study if the same anti-patterns will occur for Java program repair

and further improve the Java automated repair tools.

2 BACKGROUND AND RELATED WORK

Many automated Java repair tools have been proposed [1–3, 6, 7,

11, 12]. SimFix [3] leverages existing patches from other projects

and similar code snippets in the same project to generate patches.

CapGen [11] uses context information of AST nodes to prioritize

patches. LSRepair [6] utilizes fix ingredients at method declaration

level. Astor [7] is an automated software repair framework for Java.

It includes three implementations of repair approaches: jGenProg2,

jKali, and jMutRepair.

Previous study [10] refers to anti-patterns as a set of forbidden

transformations on programs. It defined a set of anti-patterns for C

automated repair tools, which includes the following anti-patterns

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE ’20, September 21–25, 2020, Virtual Event, Australia

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3418919

we use in our work: Anti-append Trivial Condition, Anti-delete Con-

trol Statement, and Anti-append Early Exit.

3 APPROACH AND NOVELTY

3.1 Prevalence of Anti-patterns

Wemanually analyzed the plausible patches generated for Defects4J

benchmark[4] by three Java automated repair tools: SimFix, Cap-

Gen, and LSRepair. Table 1 shows our manual inspection results.

Our study indicates that the most common anti-patterns (Delete if-

statement, Delete loop, and Insert contradiction) shown in the study

[10] for C programs also occur in Java program repair tools de-

spite recent advancement in Java repair techniques. The three tools

exhibit different anti-patterns: Anti-delete Control Statement and

Anti-append Early Exit only exist in LSRepair while CapGen only

has Anti-append Trivial Condition. We think this difference is due

to the distinct repair strategies the tools use: CapGen leverages

fine-granularity fix ingredients in terms of AST nodes [11] while

LSRepair searches for fix ingredients at the method level [6].

3.2 Examples of Anti-patterns

3.2.1 Anti-append Trivial Condition.

Insert contradiction.The patch is from SimFix for Defects4JMath80,

where k < 0 is always false :
1 - for (int k = 0; k < 4; k += step) {

2 + for (int k = 0; k < 0; k += step) {

3.2.2 Anti-delete Control Statement.

Delete loop. The patch is from LSRepair for Lang52.
1 - for (int i = 0; i < sz; i++) { ... }

3.2.3 Anti-append Early Exit.

Insert Early Return. The patch is from LSRepair for Defects4J

Lang55. It deletes the whole method body and insert an exit.
1 public void stop() {

2 - ...

3 + System.exit (0);

4 }

3.3 Integrating Anti-pattern

As we derived anti-patterns on SimFix, CapGen, and LSRepair, we

implemented anti-patterns on jGenProg2 to check if our proposed

anti-patterns generalize across tools. jGenProg2 uses genetic pro-

gramming to search fixes for programs. Algorithm 1 shows howwe

check if a program modification belongs to anti-patterns. We im-

plemented the anti-patterns shown in Table 1: Anti-delete Control

Statement, Anti-append Early Exit, and Anti-append Trivial Condi-

tion. Function isControlStmt checks if the removed statements are

if-statements or loops. isTrivialCondition checks whether the con-

ditions of if-statements and loops trivially evaluate to true/false.

isReturnBeforeStmt and isReturnNotLastStmt checks if an early re-

turn is inserted. We use SPOON [8] library to implement the code.

https://doi.org/10.1145/3324884.3418919
https://doi.org/10.1145/3324884.3418919

ASE ’20, September 21–25, 2020, Virtual Event, Australia Yi Wu

Table 1: Proportion of Anti-patterns
Total Number Of

Plausible Patches Inspected

Anti-append Trivial Condition Anti-delete Control Statement Anti-append Early Exit

Insert contradiction Insert tautology Delete if-statement
Delete

loop
Insert early return/exit

SimFix 22 8.33% 0 0 0 0

CapGen 219 10.0% 1.83% 0 0 0

LSRepair 484 0 0 64.87% 19.63% 2.48%

Algorithm 2 shows how we integrated anti-patterns in jGen-

Prog2. For each newly generated variant by function createNew-

Variant, we apply algorithm isAntiPattern to check if it is an anti-

pattern. If the variant is an anti-pattern, we discard it. Otherwise,

the function processCreatedVariant will compile then validate it us-

ing the test suite to see if it is a solution and it will be added to

temporalInstances to be the parent variant for the next generation.

Algorithm 1: isAntiPattern

Input :P: A program variant
Input :Op: An operation on the program
Output : isAnti : True if P is an anti-pattern; False if not.
// Op.me: The modified element by the operation

isAnti ←False;

if Op is RemoveOp then
isAnti ←isControlStmt(Op.me);

else if Op is ReplaceOp then
isAnti ←isTrivialCondition(Op.me)

else if Op is InsertBeforeOp then
isAnti ←isReturnBeforeStmt(Op.me);

else if Op is InsertAfterOp then
isAnti ←isReturnNotLastStmt(Op.me);

return isAnti

Algorithm 2: jGenProg2 processGeneration

Input :PV: A list of parent program variants
Input :G: The number of generation
Output :findSolution : True if any validated patch generates.

findSolution ←False;

for each parentVariant in PV do
newVariant ←createNewVariant(parentVariant, G);

if ¬ isAntiPattern(newVariant) then
temporalInstances.add(newVariant);

if processCreatedVariant(newVariant) then
findSolution ←True ;

end if

end if

end for

prepareNextGeneration(temporalInstances, G);

return findSolution;

4 RESULTS AND CONTRIBUTIONS

4.1 Experiment

We evaluate our anti-patterns in jGenProg2 using Defects4J bench-

mark. Our evaluation studies the following research questions:RQ1:

How many plausible patches can anti-patterns eliminate? RQ2:

How can anti-patterns affect correct patches?RQ3: Howmuch can

anti-patterns speed up the automated repair process?

We choose jGenProg2 because its prototype GenProg [5] is one

of the most well-known repair tools. As our goal is to evaluate

the effectiveness of anti-patterns in filtering plausible patches, we

only focus on the 29 bugs where jGenProg2 generates patches [7] .

We ran jGenProg2 on each bug up to 20 times with different seeds

every time until it generated patches. We stopped and recorded

the data the first run jGenProg2 produced any patches. In total, we

successfully generated patches for 14 bugs.

4.2 Results and Discussions

Table 2 shows the experiment results. RQ1: In total, jGenProg2

generated 67 and 29 patches without andwith anti-patterns respec-

tively. The reduction is more than that of C programs for plausible

Table 2: Evaluation Result

Bug ID Total Time (s)
Number of

Plausible Patches

Number of

Correct Patches

Time

Reduction

Original Anti-pattern Original Anti-pattern Original Anti-pattern

Chart_1 222.30 202.54 2 0 0 0 8.9%

Chart_5 58.11 47.07 1 1 0 0 19.0%

Chart_7 55.32 46.45 0 0 0 0 16.0%

Chart_13 131.38 78.28 11 3 0 0 40.4%

Chart_15 267.48 260.00 1 1 0 0 2.8%

Chart_25 434.38 402.99 4 0 0 0 7.2%

Math_70 66.66 59.99 1 1 1 1 10.0%

Math_71 1121.80 762.26 1 1 0 0 32.1%

Math_73 44.17 33.62 1 1 0 0 23.9%

Math_80 1033.84 666.92 5 6 0 0 35.5%

Math_81 907.88 689.43 14 5 0 0 24.1%

Math_82 553.94 445.74 6 6 0 0 16.5%

Math_85 337.91 225.19 16 0 0 0 33.4%

Math_95 267.63 139.05 4 4 0 0 48.0%

Sum 67 29 1 1

Average 22.6%

patches generated by GenProg and SPR [10]. We think that this dif-

ference is due to that jGenProg2 implements lots of program mod-

ifications of Anti-delete Control Statement and Anti-append Early

Exit as we observed when jGenProg2 is executing. Thus, our imple-

mented anti-patterns could effectively prohibit these invalidated

patches. RQ2: Anti-patterns can potentially affect correct patches

(e.g., the correct repair requires deletion of control statements).

In our test cases, the only correct patch generated for Math_70

is not affected. RQ3: The repair time for each bug was reduced

with different degrees. The average time reduction is 22.6%. This

result confirmed the effectiveness of anti-patterns in reducing the

repair space by removing invalidated patches as observed in previ-

ous study [10].

We also observed other potential anti-patterns when jGenProg2

is executing. For example, the plausible patch below is generated

by jGenProg2 for Defects4J Math73. We would expect a single re-

placement of the assignment to the variable delta as consecutive as-

signments to the same variable is redundant. In the future, we can

extend the anti-pattern set by including the potential anti-patterns.
1 delta = 0.5 * dx;

2 - oldDelta = delta;

3 + delta = (x0 - x1) / (1 - (y0 / y1));

4.3 Conclusion

In this study, we identified a set of anti-patterns in Java automated

repair tools.We integrated anti-patterns in jGenProg2 and observed

improvements in repair time and the number of produced plausible

patches. This indicates the general applicability of anti-patterns in

both Java and C programs. In the future, we intend to integrate

anti-patterns into Java automated repair tools implemented by dif-

ferent approaches to optimize the repair process.

ACKNOWLEDGMENTS

I wish to thank Prof. Shin Hwei Tan for her guidance on this re-

search project. This work was supported by the Department of Ed-

ucation of Guangdong Province, China (Grant No. SJJG201901).

Anti-pa�erns for Java Automated Program Repair Tools ASE ’20, September 21–25, 2020, Virtual Event, Australia

REFERENCES
[1] Qing Gao, Hansheng Zhang, Jie Wang, Yingfei Xiong, Lu Zhang, and Hong

Mei. 2015. Fixing Recurring Crash Bugs via Analyzing Q&A Sites. In
Proceedings of the 30th IEEE/ACM International Conference on Automated
Software Engineering (Lincoln, Nebraska) (ASE ’15). IEEE Press, 307–318.
https://doi.org/10.1109/ASE.2015.81

[2] Jiajun Jiang, Luyao Ren, Yingfei Xiong, and Lingming Zhang. 2019. Infer-
ring Program Transformations from Singular Examples via Big Code. In Pro-
ceedings of the 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (San Diego, California) (ASE ’19). IEEE Press, 255–266.
https://doi.org/10.1109/ASE.2019.00033

[3] Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen.
2018. Shaping Program Repair Space with Existing Patches and Simi-
lar Code. In Proceedings of the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis (Amsterdam, Netherlands) (ISSTA
2018). Association for Computing Machinery, New York, NY, USA, 298–309.
https://doi.org/10.1145/3213846.3213871

[4] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database
of Existing Faults to Enable Controlled Testing Studies for Java Programs. In
Proceedings of the 2014 International Symposium on Software Testing and Analysis
(San Jose, CA, USA) (ISSTA 2014). Association for Computing Machinery, New
York, NY, USA, 437–440. https://doi.org/10.1145/2610384.2628055

[5] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer.
2012. GenProg: A Generic Method for Automatic Software Repair. IEEE Trans.
Softw. Eng. 38, 1 (Jan. 2012), 54–72. https://doi.org/10.1109/TSE.2011.104

[6] Kui Liu, Anil Koyuncu, Kisub Kim, Dongsun Kim, and Tegawendé F. Bissyandé.
2018. LSRepair: Live Search of Fix Ingredients for Automated Program Repair. In
Proceedings of the 25th Asia-Pacific Software Engineering Conference. Nara, Japan.

[7] Matias Martinez and Martin Monperrus. 2016. ASTOR: A Program Re-
pair Library for Java (Demo). In Proceedings of the 25th International Sym-
posium on Software Testing and Analysis (Saarbrücken, Germany) (ISSTA
2016). Association for Computing Machinery, New York, NY, USA, 441–444.
https://doi.org/10.1145/2931037.2948705

[8] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Li-
onel Seinturier. 2016. SPOON: A Library for Implementing Analyses and Trans-
formations of Java Source Code. Softw. Pract. Exper. 46, 9 (Sept. 2016), 1155–1179.
https://doi.org/10.1002/spe.2346

[9] Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An Analysis of
Patch Plausibility and Correctness for Generate-and-Validate Patch Generation
Systems. In Proceedings of the 2015 International Symposium on Software Testing
and Analysis (Baltimore, MD, USA) (ISSTA 2015). Association for Computing Ma-
chinery, New York, NY, USA, 24–36. https://doi.org/10.1145/2771783.2771791

[10] Shin Hwei Tan, Hiroaki Yoshida, Mukul R. Prasad, and Abhik Roychoudhury.
2016. Anti-Patterns in Search-Based Program Repair. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering (Seattle, WA, USA) (FSE 2016). Association for Computing Machinery,
New York, NY, USA, 727–738. https://doi.org/10.1145/2950290.2950295

[11] Ming Wen, Junjie Chen, Rongxin Wu, Dan Hao, and Shing-Chi Cheung. 2018.
Context-Aware Patch Generation for Better Automated Program Repair. In Pro-
ceedings of the 40th International Conference on Software Engineering (Gothen-
burg, Sweden) (ICSE ’18). Association for Computing Machinery, New York, NY,
USA, 1–11. https://doi.org/10.1145/3180155.3180233

[12] Qi Xin and Steven P. Reiss. 2017. Leveraging Syntax-Related Code for Automated
Program Repair. In Proceedings of the 32nd IEEE/ACM International Conference on
Automated Software Engineering (Urbana-Champaign, IL, USA) (ASE 2017). IEEE
Press, 660–670.

https://doi.org/10.1109/ASE.2015.81
https://doi.org/10.1109/ASE.2019.00033
https://doi.org/10.1145/3213846.3213871
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/TSE.2011.104
https://doi.org/10.1145/2931037.2948705
https://doi.org/10.1002/spe.2346
https://doi.org/10.1145/2771783.2771791
https://doi.org/10.1145/2950290.2950295
https://doi.org/10.1145/3180155.3180233

