
Anti-patterns for Java Automated Repair Tools
Yi Wu

11712738@mail.sustech.edu.cn
Southern University of Science and Technology

Automated Program RepaIr and MaintEnance Lab (A-PRIME)

Anti-pattern Category

- if (str == "true") {return true; }
- if (str == null) {return false;}
- switch (str.length()) { … }
+ return !(arg0.startsWith("(") && arg0.endsWith(“)"));

LSRepair for Defects4J Lang51
Anti-delete Control Statement

Delete if and switch
statements

double yInitial = f.value(initial);
+ return result;
 if (…){ … }

Anti-append Early Exit
Observed running behavior of

jGenProg2 for Defects4J Math73

Insert early return

SimFix for Defects4J Math80

final double tmp=work[i+k];
 …

- for (int k = 0; k < 4; k += step) {
+ for (int k = 0; k < 0; k += step) {

Anti-append Trivial Condition

If condition is
always false

• Manually analyzed plausible patches generated by SimFix, CapGen, and LSRepair, shown in Table1 below.
• Difference of anR-paTern distribuRon is due to the disRnct repair strategies of the Java repair tools

Table 1: Proportion of Anti-patterns
Total number of plausible

patches inspected
Anti-append trivial condition Anti-delete Control Statement Anti-append early exit

Insert contradiction Insert tautology Delete if-statement Delete loop Insert early return/exit
SimFix 22 8.33% 0 0 0 0

CapGen 219 10.0% 1.83% 0 0 0
LSRepair 484 0 0 64.87% 19.63% 2.48%
*SimFix has only 22 plausible patches available on GitHub) Anti-pattern exists

despite advancement of technique
in Java repair tools.

Prevalence of Anti-patterns

• Successfully generated patches for 14 bugs with
original jGenProg2

• For the 14 bugs:
• The average repair Rme is reduced by 22.6 %.
• The number of generated plausible patches is

reduced from 67 to 29 in total.

Control loop condiRon by irrelevant
variable

Results Potential New Anti-patternsExperiment

•Focus on the 29 Defect4J bugs where
original jGenProg2 generates patches.
•Run jGenProg2 on each bug up to 20
Rmes with different seeds.
•Recorded the first run jGenProg2
produced any patches.

- for (int k = 0; k < 4; k +=
+ for (int k = 0; n < 4; k +=

for (int i = 0; i < j; i += 4) {

Motivation

• Use test suites to specify the intended behavior of programs.

• Insufficient test cases cause Incomplete specification.

• Automated repair tools generate plausible patches.

Plausible patches are
sufficient to pass the given
tests but are incorrect
beyond the test suite.

Hey , I have repaired your
program bug.Wow, How do you fix it?

Ah, I just delete the whole buggy
method you wrote.

What? I am trying to implement a
functionality ! Why do just you delete it?

You never told me that! Besides, I
passed all the tests you gave me.

Automated repair tool

Automated repair tool

Automated repair tool

Prior study has identified
anti-patterns in C program
repair. Do anti-patterns also
exist in Java repair tools？

Anti-pattern — a set of forbidden transformations on programs

solution : specify what not to do.

Automated Program RepaIr and MaintEnance Lab (A-PRIME)

Integrating Anti-patterns

Get applied
operation

Replace

Remove

InsertAfter

InserBefore isReturnStmt

isReturnButNotLast

isControlStmt

isTrivialCondition

anti-pattern

Yes

Yes

Yes

Yes

Program
variant

jGenProg2
Program Variant

is anti-pattern ?
No Program

Compilation
Pass all the

tests?

Yes
Final patch

Add to
variant pool

Generate new program variant

Yes

Variant Variant
Variant

Checking for anti-pattern

Anti-pattern in evolution

This work was supported by the Department of Education of Guangdong Province, China (Grant No. SJJG201901)

 Integrated in
jGenProg2(Astor) to
check if anti-patterns
generalize across Java

repair tools.

(click to see)

We opened a pull request
in Astor and the

implementation has been
merged by the developers.

Click to see!

https://github.com/SpoonLabs/astor/pull/246

